## **Conflict set - Parabola**

| Author                                                                                                                                                                   | Eva Špalj, XV. gymnasium Zagreb, Croatia                                                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                          | Matija Bašić, Željka Milin Šipuš, Faculty of Science, University of Zagreb, Croatia                                      |  |
|                                                                                                                                                                          | Michiel Doorman, Freudenthal Institute, University Utrecht, the Netherlands                                              |  |
| Target knowledge                                                                                                                                                         | Realizing that the parabola defined as a locus of points equidistant from a horizontal line and a given point is a graph |  |
|                                                                                                                                                                          | of some quadratic function.                                                                                              |  |
| Broader goals                                                                                                                                                            | Calculating using coordinates, connecting geometrical and algebraic representation of a mathematical object              |  |
| Prerequisite                                                                                                                                                             | Coordinate system in the plane, equation of the line, the distance formula (or Pythagoras theorem)                       |  |
| mathematical                                                                                                                                                             | Building on Conflict lines - introduction                                                                                |  |
| knowledge                                                                                                                                                                |                                                                                                                          |  |
| Grade                                                                                                                                                                    | Age 16-17, Grade 10 (After teaching quadratic functions)                                                                 |  |
| Time                                                                                                                                                                     | 70 minutes                                                                                                               |  |
| Required material                                                                                                                                                        | Grid paper with coordinate system and/or ICT if possible, to plot and construct                                          |  |
| Problem:                                                                                                                                                                 |                                                                                                                          |  |
| Consider line <i>p</i> with the equation $y = 2$ and point $A(5,4)$ . Show that points $M(7,4)$ and $N(1,7)$ are equally distant from line <i>p</i> and point <i>A</i> . |                                                                                                                          |  |

Find all points with the same property!

| Phase         | Teacher's actions incl. instructions        | Students' actions and reactions            | Observations from |
|---------------|---------------------------------------------|--------------------------------------------|-------------------|
|               |                                             |                                            | implementation    |
| Devolution    | Teacher recalls a navigation problem from   | Students organize the scenery.             |                   |
| (didactical)  | the previous scenario. He poses the         |                                            |                   |
|               | problem: one student is standing in the     |                                            |                   |
| 2 min         | class and the others form a navigation      |                                            |                   |
|               | route for a robot to avoid the student and  |                                            |                   |
|               | the closest wall in the class.              |                                            |                   |
| Action        | Teacher observes the students' reaction     | Students are trying to form the route by   |                   |
| (adidactical) | and reasoning how they know they are at     | standing at equal distance to the specific |                   |
|               | equal distance to the student and the wall. | student and the wall.                      |                   |
| 5 min         |                                             |                                            |                   |

| Devolution    | Teacher presents a mathematical model of                                                | Students analyse the problem and start                        |  |
|---------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| (didactical)  | this specific situation                                                                 | organizing the data                                           |  |
| (undecrear)   | Consider line $p$ (representing the wall)                                               |                                                               |  |
| 3 min         | with the equation $y = 2$ and point $A(5,4)$                                            |                                                               |  |
|               | (representing the student). Show that                                                   |                                                               |  |
|               | points $M(7,4)$ and $N(1,7)$ are equally                                                |                                                               |  |
|               | distant from line <i>p</i> and point <i>A</i> . Find all points with the same property! |                                                               |  |
| Action        | Observes if students remember the                                                       | Students make some sketches of the                            |  |
| (adidactical) | distance formula or calculate the distance                                              | problem.                                                      |  |
|               | using Pythagoras theorem.                                                               | They calculate the distances of points <i>M</i>               |  |
| 7 min         |                                                                                         | and <i>N</i> to point <i>A</i> and line <i>p</i> . Verify the |  |
|               |                                                                                         | statement.                                                    |  |
|               |                                                                                         |                                                               |  |
|               |                                                                                         | Think of strategies to find more such                         |  |
|               |                                                                                         | points.                                                       |  |
|               |                                                                                         | Students are expected to try to draw or                       |  |
|               |                                                                                         | construct some point in the coordinate                        |  |
|               |                                                                                         | system.                                                       |  |
|               |                                                                                         | Expected answer:                                              |  |
|               |                                                                                         | Finding the point $(5,3)$ since it is halfway                 |  |
|               |                                                                                         | between point A and line p.                                   |  |
|               |                                                                                         | Finding points $(3,4)$ and $(9,7)$ because                    |  |
|               |                                                                                         | of the symmetry.                                              |  |
|               |                                                                                         | Finding all points $T(x, y)$ such that                        |  |
|               |                                                                                         | d(T,A)=d(T,p).                                                |  |
|               |                                                                                         |                                                               |  |

| Formulation<br>(adidactical) | Teacher circulates in the classroom to<br>identify what different ideas the students<br>recall and use. | Students discuss in groups what they did,<br>how many different points they found. |  |
|------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|
| 5 min                        |                                                                                                         |                                                                                    |  |
| Validation                   | Teacher asks certain students to present                                                                | Students give arguments why their point                                            |  |
| (didactical and              | what they did so far.                                                                                   | are relevant by Pythagoras, symmetry.                                              |  |
| adidactical)                 |                                                                                                         |                                                                                    |  |
| 4 min                        |                                                                                                         |                                                                                    |  |
| Devolution<br>(didactical)   | If none of the groups (or just 1-2) is                                                                  | Students listen.                                                                   |  |
| (uluactical)                 | noints teacher must take the initiative                                                                 |                                                                                    |  |
| 2 min                        | points, teacher must take the initiative.                                                               |                                                                                    |  |
|                              | Teacher sets a motivating question: Can                                                                 |                                                                                    |  |
|                              | you find a point on line $y = 12$ the that is                                                           |                                                                                    |  |
|                              | equidistant from line <i>p</i> and point <i>A</i> ?                                                     |                                                                                    |  |
|                              | And on line $x = 6.4$ ?                                                                                 |                                                                                    |  |
| Action                       | Teacher circulates in the classroom                                                                     | Student try to solve the problem by                                                |  |
| (adidactical)                |                                                                                                         | plotting the line $y = 12$ . They realise that                                     |  |
| 20                           |                                                                                                         | the distance to line <i>p</i> is 10, a point on line                               |  |
| 20 min                       |                                                                                                         | y = 12 has coordinates $T(x, 12)$ and set                                          |  |
|                              |                                                                                                         | the equation $d(T, A) = 10$ . They find two                                        |  |
|                              |                                                                                                         | points and can conclude that is because                                            |  |
|                              |                                                                                                         | of the symmetry. Some of the students                                              |  |
|                              |                                                                                                         | might realize (without knowing the                                                 |  |
|                              |                                                                                                         | point-line formula) that the distance of                                           |  |
|                              |                                                                                                         | any point $T(x, y)$ to line $y = 2$ is $ y-2 $                                     |  |
|                              |                                                                                                         | and then try to find all points $T(x, y)$                                          |  |
|                              |                                                                                                         | such that $d(T, A) =  y-2 $ .                                                      |  |

|                      |                                                | The others continue investigating calculating distances for different points on line $x = 6.4$ . Or                                                                                                                                   |  |
|----------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                      |                                                | by estimation approx. (6.4,3.5).                                                                                                                                                                                                      |  |
|                      |                                                | Or students recall the concept of perpendicular bisector and construct it geometrically (possible use of ICT).<br>Some students might notice the parabolic shape and work with equation $y = a(x-h)^2 + k$ , or $y = ax^2 + bx + c$ . |  |
| Formulation          | Teacher circulates in the classroom to         | Students discuss in groups what they did,                                                                                                                                                                                             |  |
| lauluactical         | recall and use.                                | requested property and how to write it                                                                                                                                                                                                |  |
| 5 min                |                                                | down. If they recognized that the                                                                                                                                                                                                     |  |
|                      |                                                | solution is a parabola, how to find the                                                                                                                                                                                               |  |
|                      |                                                | coefficients in the equation.                                                                                                                                                                                                         |  |
| Validation           | Teacher asks certain students to present       | Students give arguments why their                                                                                                                                                                                                     |  |
| (didactical and      | what they did so far.                          | equation is the right one.                                                                                                                                                                                                            |  |
| adidacticalj         |                                                | the equation are equidictant to the given                                                                                                                                                                                             |  |
| 10 min               |                                                | line and the given point.                                                                                                                                                                                                             |  |
| Institutionalisation | Teacher highlights the similarities and        | Students listen and recognize their own                                                                                                                                                                                               |  |
| (didactical)         | differences in the students' strategies and    | strategy as one of those mentioned by the                                                                                                                                                                                             |  |
|                      | explains how all the information that          | teacher.                                                                                                                                                                                                                              |  |
| 7 min                | students produced can be mathematically        |                                                                                                                                                                                                                                       |  |
|                      | expressed.                                     |                                                                                                                                                                                                                                       |  |
|                      | If students assumed that the set of all        |                                                                                                                                                                                                                                       |  |
|                      | points with the given property is a parabola   |                                                                                                                                                                                                                                       |  |
|                      | and found its equation, they have to prove     |                                                                                                                                                                                                                                       |  |
|                      | that it satisfies the equal distance property. |                                                                                                                                                                                                                                       |  |

Possible ways for Calculating distance between *M*, *N* and *A*, *p* students to realize d(M,p) = 2target knowledge  $d(M, A) = \sqrt{(5-7)^2 + (4-4)^2} = 2$ N d(N, p) = 5 $d(N, A) = \sqrt{(5-1)^2 + (4-7)^2} = 5$ M Students might read the distances from the coordinate system. D 10 Students could also find three symmetrical points M', N' and T<sub>1</sub>. If students are familiar with the point-line distance formula, they can use it in finding all points T(x, y) such that d(T, A) = d(T, p), where N A(5,4), p...y-2=0N' $(x-5)^{2} + (y-4)^{2} = \left(\frac{|y-2|}{\sqrt{0^{2}+1^{2}}}\right)^{2}$ М Α M' $x^2 - 10x + 25 + y^2 - 8y + 16 = y^2 - 4y + 4$  $T_1$  $y = \frac{1}{4}x^2 - \frac{10}{4}x + \frac{37}{4}$ 5 10 Students can also notice that the distance is equal to |y-2| just from the sketch, without knowing the point-line formula.



