MERIA Scenario "Conflict lines – introduction"

Partitioning of a plane by perpendicular bisectors

Target knowledge	The partitioning of a plane by perpendicular bisectors of pairs of given points.			
Broader goals	Construction of a perpendicular bisector. Understanding the characterization of a perpendicular bisector as the			
	collection of points that have equal distance to two given points. Characteristics of bisectors and their points of			
	intersection in triangles and quadrilaterals, and characteristics of points in regions determined by perpendicular			
	bisectors. The ability to operate with the notation $d(P,X) < d(P,Y)$.			
	Inquiry skills: experimenting and drawing systematically to create areas or borders of areas that are determined by			
	(distances to) given points. Presenting findings clearly by making decisions which lines to emphasize.			
	Interdisciplinary skills: students can connect territorial problems or conflicts (geography) to geometrical ways of			
	representing and solving these conflicts. Other problems may be used to discuss application to robot navigation.			
Prerequisite	Pythagoras and triangle inequality (in particular for the proof).			
mathematical				
knowledge				
Grade	Age 15 - 16, grade 9 - 10 (whenever the perpendicular bisector is introduced)			
Time	40 minutes, with applet 70 minutes			
Required material	Worksheets, paper, ICT and MERIA applet in GeoGebra: <u>https://meria-project.eu/applet/voronoi/voronoi.html</u>			
	Alternative sites: <u>http://alexbeutel.com/webgl/voronoi.html</u> , <u>https://www.desmos.com/calculator/ejatebvup4</u>			
Observations from i	mplementation			
The context of observations (grade, institution, country, etc.):				
Problem: Given a collection of water wells in a desert. Students are asked to colour areas in the desert in such a way that for each possible point in a coloured area the corresponding well should be the one that is the closest to that point. ¹				

¹ The problem and the map of the desert was intoduced in the book Geometry with Applications and Proofs, Voronoi Diagrams by A. Goddijn, M. Kindt, W. Reuter

Phase	Teacher's actions incl. instructions	Students' actions and reactions	Observations from
Devolution 1	Introduce the notion of a conflict line in the	Students participate by raising hands	
(didactical)	classroom: Suppose two students (X and Y)	and feel being a point in a plane and	
	have some sweets and you are asked to go	deciding themselves whether they are	
5 minutes	for a sweet to the one who is closest to you.	closer or not to one of the two given	
	The teacher selects the two students and	points. Moreover, they see how others	
	asks: who is closer to student X and who to	decide.	
	student Y, and finally let students raise		
	hands that have difficulty in deciding		
Institutionalisation	The teacher summarizes the main finding:	Students listen and are able to connect	
(didactical)	The problem is to identify points with 'same	the institutionalized reasoning and	
	distance' and the challenge is to find some	notation to their own work.	
2 minutes	kind of procedure for being sure and precise		
	about the collection of points with that		
	characteristic. Consensus is established on		
	notation (e.g. d(A,C) <d(b,c) c<="" for="" point="" td=""><td></td><td></td></d(b,c)>		
	being closer to A than to B). This will be		
	elaborated in the next step (students will get		
	the opportunity to work with notation and		
	distance-related reasoning).		
Devolution 2	The teacher sets a new problem: Locate	Students listen.	
(didactical)	yourself somewhere in the desert (provide a		
	worksheet to students). Find the well that is		
3 minutes	the closest to you. Find all positions from		
	which you would also go to that well.		
	Finally, divide the map into regions around		
	wells, such that for each well all points in the		
	corresponding region are closest to that		
	particular well.		

Mathematics Edu Relevant, Interesting and	cation - Applicable		
Action (adidactical) 15 minutes	Teacher circulates in the classroom.	After plotting the position and detecting the closest well, groups start to construct the region with all such points – the closest well paired with others, one by one. To divide into regions students discover that they need some kind of strategy (proof) because soon, with more points, things become complicated.	
Formulation (adidactical) 5 minutes	Teacher circulates in the classroom to identify what different ideas the students recall and use and announces presentations.	Students discuss in groups what they did, what the set of points with the requested property is and how to write it down.	
Validation (didactical and adidactical) 5 minutes	Teacher asks some groups to present what they did so far (if possible, at least a group that uses equidistant circles and a group that started drawing bisectors).	Students present.	
Institutionalisation (didactical) 5 minutes	Teacher highlights the fundamental theorem underlying what they did: d(A,P) = d(B,P) if and only if P is on the perpendicular bisector. Voronoi diagrams are constructed with perpendicular bisectors, so these are the basis of algorithms to construct those diagrams. In addition, definitions of bisectors can be discussed: "the collection of points with equal distance to points A and B", and "the line through midpoint and perpendicular to AB". An optional part of the scenario: Can you prove the theorem?	Students understand the introduced notation as it refers to their activity, e.g. d(A,P)=d(B,P) defines a line of points P (so-called "conflict line" for points A and B). d(A,P) <d(b,p) (so-called<br="" a="" defines="" region="">"safe region"), and they understand the mathematical problem as it also emerged in their activity.</d(b,p)>	

		circle-tool and the formal distance-			
		notation and theorems like Thales,			
		Pythagoras			
Validation	The presentations help to validate what	Students see the connection between the			
(didactical and	happens in these diagrams, to get familiar	validations and the formulations of their			
adidactical)	with the formal notation and to use	findings.			
2	geometrical reasoning in different				
5 minutes	partitioning situations.				
Institutionalisation	General conclusions of the concept of	Students realize how institutionalized			
(didactical)	Voronoi diagrams consisting of	learning goals are connected to their			
	perpendicular bisectors, and some	initial explorations in the desert-context			
5 minutes	illustrative cases and patterns in these	and have acquired these learning goals.			
	diagrams.				
Possible ways for	• Some students will start sketching lines between the given points that have more or less curved pieces and no				
students to realize	clear intersection-points where three (or four) lines meet.				
target knowledge					
	Some students will draw circles or div	ide the areas with curved lines. These stude	nts need to realize that curved		
		- simples is helpful for finding resides with			

- lines are impossible and that drawing circles is helpful for finding points with the same distance to a well or center, but not for finding borders (although they can be used for that).
- Some students might immediately know what to do and start drawing bisectors. For them, the crucial point is to discuss what happens in areas where bisectors meet. Do they meet at one meet point?

Mathematics Education – Relevant, Interesting and Applicable

