MERIA Scenario "Braking distance"

Quadratic relationship

Target knowledge	Braking distance is quadratically dependent on the initial speed.							
Broader goals	Quadratic functions and their characterization by constant second derivative (second differences for quadratic							
	sequences), or by constant decreasing or increasing first derivative (differences for quadratic sequences). Making							
	calculations with different measuring units. Organizing data. Formulating functional relationship (writing the							
	formula for function rule). Drawing graphs of (quadratic) functions on paper or using ICT.							
	Inquiry skills: analysing data and looking for patterns in the tables, justifying findings (argumentation) during the							
	presentations (the calculations dominate the process and students have to summarize their approach to others).							
	Interdisciplinary skills: students have to work with variables from physics and make sense of the situation							
	(bridging the two worlds of notations and procedures). Professional communication skills are emphasized in							
	writing the report. Student also discuss responsibility of drivers and safety in traffic.							
Prerequisite	Basic knowledge on functions, the relationship between constant speed and distance, average speed, conversion							
mathematical knowledge	of km/h into m/s (and vice versa)							
Grade	Age 16, grade 10 (whenever quadratic functions are introduced)							
Time	90 minutes, two lessons							
Required material	Handouts with tables to be filled, calculator, computer, graph paper							
Ob								

Observations from implementation

The context of observations (grade, institution, country, etc.):

Problem: In a city area with primary schools, parents complain about the set speed limit, considering it inadequate for the area with schoolchildren. A group of reckless drivers says that they do not need to worry because they brake in time. Now, you (the students) are asked to investigate how the braking distance relates to speed just before braking. Advise the mayor about the consequences of changing maximum speed. Underpin your advice with representations like tables and graphs.

Consider a car braking in such a way that the speed decreases by 10 km/h every 0.4 seconds. You can use the tables below to organize calculations, observe, and then justify your answer as you best can.

Phase	Teacher's actions incl. instructions	Students' actions and reactions	Observations from implementation
Devolution	Teacher divides students into groups of	Students listen talk about their ideas and	
(didactical)	three or four.	answer the questions.	
(The teacher poses the problem to students		
10 minutes	(S)He makes sure that students understand	l i	
	the assumption of a constant decreasing	l i	
	speed during braking and discusses the	l i	
	idea of small time intervals where the	l .	
	movement can be approximated as the		
	movement by the constant (average)	l .	
	speed.	l i	
	The teacher checks out that students		
	understand the terms in the tables, the		
	basic relationship between the speed, time	l i	
	and distance, how to convert km/h to m/s		
	and the idea that 40 km/h could be		
	replaced by other numbers.		
	The teacher remarks to students they are		
	free to use their own and different		
	strategies. They are free to use any type of		
	technology.		
	Students are given a worksheet with the		
	task. They are provided with a calculator (if		
	students don't have their own), computer		
	and graph paper.		
	Students are told that they have 20 minutes		
	to investigate how speed and distance are		
	changing and to make some conclusions		
	about how they are related.	<u> </u>	

Action	The teacher circulates, observes students	Students discuss in their group about	
(adidactical)	working without interfering.	strategies.	
20 minutes	In the case that many groups start a new	They are completing tables using	
	table for every new initial speed the	calculators or use ICT to graph points etc.	
	teacher might ask for a short plenary to ask		
	how groups dealt with this issue. Probably,	They talk about precision, choosing	
	at least one of the groups realize that they	different initial speed and similar issues.	
	can use previous calculations when trying		
	to deduce the braking distance for other	Members of the group might have	
	initial speeds and read from that table also	different ideas and develop them	
	the braking distance for lower initial	individually.	
	speeds. This can be used as feedback for all		
	other groups.	Students might use calculations, graphs	
		or physics laws to come to conclusions:	
		- braking distance is not changing with a	
		constant rate,	
		- the relation between the initial speed	
		and distance is not linear,	
		- as the initial speed increases, braking	
		distance also increases, but not	
		proportionally.	
		Some students might notice that 2nd	
		differences are (approximately) constant	
		and use recursion method for	
		calculations	
Formulation	The teacher goes to each grown and asks	Students present their work shortly and	
(didactical)	them to present shortly what they have	ask questions.	
	found. (S)He might ask questions and		
10 minutes	discuss their ideas, particularly if they have		
	stuck.		

Mathematics Edu Relevant, Interesting and	ICation –		
	The teacher asks groups with different strategies (within the group) to focus on one strategy that they will use for generalizing and presenting their ideas (due to lack of time).		
	The teacher reminds students that the goal of the activity is to find out how the braking distance relates to speed just before braking to be able to do predictions and to give proper advice to the mayor. Therefore, students are asked to prepare advice to the mayor about the consequences of changing maximum speed and underpin their advice with representations like tables and graphs.		
Action and formulation (adidactical) 20 minutes	The teacher is observing.	Students are trying to generalize their calculations and observations. Some of them might change the strategy for generalizing or approach to the problem. Students are preparing advice to the mayor.	
Validation (didactical) 25 minutes	The teacher asks students to present and compare their strategies.	Students present their work, listen, ask questions and discuss other strategies and solutions.	

Institutionalisation	The teacher highlights the mathematical	Students listen and connect their
(didactical)	differences and similarities in the student's	solutions with a general quadratic
	strategies, explains why some strategies	function.
5 minutes	will not provide proof but might be	
	convincing from the graph and a formula	
	that might be produced by technology, that	
	the relationship is quadratic.	
	The teacher introduces quadratic function.	

Possible ways for students to	Students will fill the given table with data (<i>v</i> , <i>d</i>).									
knowledge		Time (seconds)	Change in speed during braking (km/h)	Average speed (km/h)	Average speed (m/s)	Time interval ∆t (s)	Distance traveled ∆d (m)			
		t = 0 to $t = 0.4$	v = 40 to $v = 30$	35	$\frac{175}{18}$	0.4	$\frac{35}{9}$			
		t = 0.4 to $t = 0.8$	<i>v</i> = 30 to <i>v</i> = 20	25	$\frac{125}{18}$	0.4	$\frac{25}{9}$			
		t = 0.8 to $t = 1.2$	<i>v</i> = 20 to <i>v</i> = 10	15	$\frac{25}{6}$	0.4	$\frac{15}{9}$			
		t = 1.2 to $t = 1.6$	<i>v</i> = 10 to <i>v</i> = 0	5	$\frac{25}{18}$	0.4	<u>5</u> 9			
	Distance traveled after braking (m)						$\frac{80}{9}$			
		·	·							

Speed just before braking (km/h)	30	40	50	60	70	80	90	100	110
Braking distance (m)	5	$\frac{80}{9}$	$\frac{125}{9}$	20	$\frac{245}{9}$	$\frac{320}{9}$	45	$\frac{500}{9}$	$\frac{605}{9}$
Or with decimals, for insta	nce:								
Speed just before braking (km/h)	30	40	50	60	70	80	90	100	110
Braking distance (m)	5	8.89	13.89	20	27.22	35.56	45	55.56	67.22
By looking at the data they • The braking distance	v can conclu ce is longer tween spee	ide: when the ed and br	e speed is h aking dista	igher. nce is not	t linear $\left(\frac{\Delta a}{\Delta t}\right)$	is not con	istant).		

٠

In this formula we substitute v_0 in km/h and get the distance in metres.

- Students can use calculators and write data in tables as decimal numbers. The results will not be exact and it is not easy to recognize patterns.
- Students can use information that the speed decreases by 10 km/h every 0.4 seconds. They might calculate that the speed decreases by 25km/h every second, or by 6.94 m/s every second, which means that acceleration is a = 6.94 m/s². Then they use formulas from physics:

$$v = v_0 - at, d = v_0 t - \frac{a}{2} t^2$$
.

They use an important conclusion: if we observe the braking distance, we look for the moment when the speed is equal to zero. From the first formula (v = 0) they calculate time $t = \frac{v_0}{a}$ and substitute in the second to get

$$d = \frac{v_0^2}{2a} = \frac{9v_0^2}{125} = \frac{v_0^2}{13.8} = 0.072v_0^2.$$

In this formula we substitute v_0 in m/s to get the distance in metres.

If students calculate acceleration in km/h² they will get: $a = 90000 \text{ km/h}^2$, substitute v_0 in km/h and get distance in kilometres v_0^2

$$d = \frac{v_0^2}{180000}$$
, or in metres $d = \frac{v_0^2}{180}$

• Students can draw a *v*-*t* graph and calculate the distance as the area under the graph:

$$d = \frac{1}{2} \cdot \frac{v_0}{a} \cdot v_0 = \frac{v_0^2}{2a} = 0.072v_0^2.$$

In this formula we substitute v_0 in m/s.

Mathematics Education -Relevant, Interesting and Applicable

	Time (seconds)	Change in speed during braking (km/h)	Average speed (km/h)	Average speed (m/s)	Time interval ∆t (s)	Distance traveled Δd (m)
	t = 0 to $t = 0.4$	<i>v</i> = 40 to <i>v</i> = 30	35			
Distance traveled after braking (m)						

Speed just before braking (km/h)	40				
Braking distance (m)					