
MERIA Scenario "ab-ba"

The Distributive Law

Target knowledge	Using the distributive law $n(a + b) = n a + n b$.
Broader goals	Inquiry skills. Problem solving skills.
Prerequisite	Basic arithmetic.
mathematical	
knowledge	
Grade	13 year olds
Time	20-25 minutes
Required material	Pen and paper, possibly calculator
Observations from implementation	
Context of observations (grade, institution, country, etc.):	
Problem:	

Look at two-digit numbers, for example 83. For each number look at the difference between the number and its reverse (for 83 this is 38). What do you get if you subtract the smaller one from the bigger one (83-38)? Try again with new numbers. What pattern do you see? Can you explain this?

Phase	Teacher's actions incl. instructions	Students' actions and reactions	Observations from implementation
Devolution (didactical)	The teacher states the problem as above, including the example of 83 to make sure the students understand what is meant by	They try with new numbers and try to	
3 minutes	"reverse" and what calculation to make.		
Action (adidactical)	Teacher walks round the classroom and registers the students' strategies.	Students try to solve the problem.	
10 – 15 minutes			

Formulation	The teacher invites for each significantly	Chosen students present their solution.	
(Adidactical or	different strategy one group to formulate	The other students listen, compare their	
didactical if the	their solution on the blackboard.	own work to the presented solution and	
teacher feels		ask questions.	
support is needed)	If students find a solution quickly, the		
	teacher could suggest they try the same	There are two options:	
3 minutes	problem for more-digit numbers.	(1) The groups just found that the	
		difference is divisible by 9.	
		(2) The students found a justification in	
		the form of approaches (A), (B), (C), (D)	
		or (E).	
Validation	In case (1) the teacher could lead a		
(didactical)	classroom discussion on how to know for		
	sure the hypothesis is true for all 2-digit		
7 minutes	numbers. The outcome could be approach		
	(A), (B), (C), (D) or (E) below which is		
	discussed and then forms a validation of		
	the students' hypothesis.		
Institutionalisation	The teacher explains how the step		
(didactical or	9a - 9b = 9(a - b)		
adidactical)	or		
	$9 \cdot 8 - 9 \cdot 3 = 9(8 - 3)$		
5 minutes (or more)	is an instance of a more abstract		
	mathematical law $n(a + b) = n a + n b$.		
	The teacher can show more instances of		
	this law.		

Mathematics Education - Relevant, Interesting and Applicable		
Possible ways for students to realize target knowledge	 Approach (A): algebraic approach Say the number equals 10a + b for a = 1,2,,9 and b = 0,1,2,,9. Then the reverse is 10b + a. The difference between these numbers is plus or minus 10a + b - (10b + a) = 9a - 9b = 9(a - b). Approach (B): implicit algebraic (by numerical example) Say the number equals 83 = 10 · 8 + 3. Then the reverse is 38 = 10 · 3 + 8. The difference between these numbers is plus or minus 83 - 38 = 10 · 8 + 3 - (10 · 3 + 8) = 9 · 8 - 9 · 3 = 9(8 - 3) = 9 · 5. Approach (C): First notice that the claim is true for numbers in the multiplication table of 9, for it contains all its reverses: 09 and 90, 18 and 81, 27 and 72 etc. Then note that starting with one of those numbers adding 1 to it means adding 10 to the reverse, adding 2 to the first means adding 20 to the reverse, etc. For the difference this means either adding plus or minus 10 · 1 or 20 · 2 or 30 · 3 etc. which is again the multiplication table of 9. As an example, consider 39. This is 36 + 3, where 36 is in the table of 9. So, 36 + 3 - (63 + 30) is divisible by 9 because 36, 63 and 3 · 30 are. Approach (D): This approach uses the criterium that a number is divisible by 9, if and only if the sum of its digits is divisible by 9. We denote a number 35 by [3.5] to be able to keep track of its decimal digits. Suppose you chose number [a. b] with reverse [b. a]. Assume a > b, then the difference is [a. b] - [b. a] = [(a - 1) - b. (10 + b) - a]. The sum of the digits is a - 1 - b + (10 + b - a) = 9 and the result follows. Example: [5.3] - [3.5] = [4 - 3.13 - 5] and 4 - 3 + 13 - 5 = 9. Approach (E): The claim is true for 1. Because 1·10=-9. Then we prove for the other numbers inductively. Suppose it is true for number n. Adding 1, then 	
	$n+1-(n+1)_{reverse} = n+1-(n_{reverse}+10) \text{ or } n+1-(n+1)_{reverse} = n+1-(n_{reverse}-89).$ Both -9 and +90 are multiples of 9. So, the result is a multiple of 9.	